基于自适应共振模型的信用风险评估(1)

时间:2025-01-13 05:28:04 来源:作文网 作者:管理员

关键词:自适应共振,神经网络,信用风险

摘要:自适应共振模型是为了能够分类☂任意次序模拟输入模式而设计的,它可以按任意精度对输入的模拟观察矢量进行分类,较好地解决了前稳定性和灵活性问题,同时能够避免对网络先前所学的学习模式修改。本文将ART2模型应用于信用风险评估,通过实证比较研究,结果显示应用自适应共振模型进行信用风险评估在精度和准确性上,都优于其他神经网络模型和统计方法。

1统计方法用于信用风险分类评估存在的局限性

对信用风险评估一类主流方法是基于分类的方法,♡即把信用风险分析看成是模式识别中的☁一类分类问题—将企业划分为能够按期还本付息和违约两类。其具体做法是根据历史上每个类别(如期还本付息、违约)的若干样本,从已知的数据中发现其规律,从而总结出分类的规则,建立判别模型,用于对新样本的判别,这样信用评估就转化为统计中的分类问题。传统的统计模型主要基于多元统计分析方法,根据判别函数的形式✉和样本分布的假定不同,主要的模型有:多元回归分析模型、多元判别分析模型(MDA)、Logit分析模型、近邻法等。其中以多元判别分析模型和Logit分析模型应用最为广泛,已有大量商业化软件。

尽管这些方法在国外有大量应用,但是大量实证研究(Altman,Σ1983;Tam


热门排行: 教你如何写建议书