免费毕业论文--差速器壳体工艺及镗工装设计(一)
差速器壳体工艺及镗工装设计
摘要
随着社会的发展,汽车在生产和生活中的越来越广泛,差速器是汽车中的重要部件,其壳体的结构及加工精度直接影响差速器的正常工作,因此研究差速器的加工方法和工艺的编制是十分必要和有意义的。本次设计主要内容有:差速器的工作原理结构分析,差速器壳体的工艺编制,镗夹具的设计及加工中对定位基准的选择,镗工序工装设计中切削用量,夹紧力的计算等。
关键词:差速器,壳体,夹具设计
Differential Device Case Process and Boring Suits Design
ABSTRACT
Along with social development, motor vehicle production and life in an increasingly wide differential device is an important vehicle components, and its interior structure and processing precision differential device directly affect the normal work, study differential device case processing methods and techniques of preparation is necessary and meaningful. The current design of the main elements: differential device structures operating principles of analysis, differential device case preparation processes, design and smooth-bore jig for positioning baseline processing options smooth-bore design processes suits cutting consumption, increased computing power.
Key word: Differential device, Case, Jig design
第1章 绪论 1
1.1 课题的背景及意义 11.2.1 开式差速器 21.3 差速器结构 3
1.3.1 对称式锥齿轮差速器中的运动特性关系式 41.4 壳体的加工工艺 7
1.4 论文主要内容 8
第2章 零件的作用及结构及工艺分析 10
2.1 零件的作用及结构 10
2.2 零件的工艺分析 11
第3章 工艺规程设计 13
3.1 确定生产类型 13
3.2 毛坯的选择 13
3.2.1 毛坯种类及制造方法的形状及选择 13
3.2.2 毛坯的精度等级 13
3.3 基准的选择 14
3.3.1 粗基准的选择 14
3.3.2 精基准的选择 14
3.4 工艺路线的制定 14
3.5 确定个工序余量及工序尺寸极限偏差 16
3.6 确定切削用量和切削 18
3.7 确定工序单件工时 19
第4章 机床专用夹具设计——镗工序的专用夹具设计 224.2 定位基准的选择 24
4.3 夹紧力的计算 24
4.4 定位误差分析 26
4.5 结构特点 28
4.6 使用方法和应注意的问题 28
致谢 29
参考文献 30
第1章 绪论
1.1 课题的背景及意义
对于整车的结构体系来说,差速器只是装在两个驱动半轴之间的一个小轴承。看似微不足道,但如果没有它,两个驱动半轴之间以刚性连接,左右车轮的转速保持一致,汽车将只能直线行驶,不能转弯。自从一百年前雷诺汽车公司的创始人路易斯·雷诺发明出差速器后,它就在汽车上发挥着巨
大作用。现在每辆汽车上都装有差速器。
顾名思义,差¡速器的作用就是使两侧车轮转速不同。当汽车转弯时,例如左转弯,弯心在左侧,在相同的时间内右侧车轮要比左侧车轮走过的轨迹要长,所以右侧车轮转的要更快一些。要达到这个效果,就得通过差速器来调节。差速器由差速器壳、行星齿轮、行星齿轮轴和半轴齿轮等机械零件组成。
发动机的动力经变速器从动轴进入差速器后,直接驱动差速器壳,再传递到行星齿轮,带动左、右半轴齿轮,进而驱动车轮,左右半轴的转速之和等于差速器壳转速的两倍。当汽车直线行驶时,行星齿轮,左、右半轴齿轮和驱动车轮三者转速相同。当转弯时,由于汽车受力情况发生变化,反馈在左右半轴上,进而破坏差速器原有的平衡,这时转速重新分配,导致内侧车轮转速减小,外侧车轮转速增加,重新达到平衡状态,同时,汽车完成转弯动作。
差速器就是一种将发动机输出扭矩一分为二的装置,允许转向时输出两种不同的转速。
在现代轿车或货车,包括许多四轮驱动汽车上,都能找到差速器。这些四轮驱动车的每组车轮之间都需要差速器。同样,其两前轮和两后轮之间也需要一个差速器。这是因为汽车转弯时,前轮较之后轮,走过的距离是不相同的。
差速器有三大功用:把发动机发出的动力传输到车轮上;充当汽车主减速齿轮,在动力传到车轮之前将传动系的转速减下来;将动力传到车轮上,同时,允许两轮以不同的轮速转动。
当汽车转向时,车轮以不同的速度旋转。在转弯时,每个车轮驶过的距离不相等,即内侧车轮比外侧车轮驶过的距离要短。因为车速等于汽车行驶的距离除以通过这段距离所花费的时间,所以行驶距离短的车轮转动的速度就慢。
对于后轮驱动型汽车的从动轮,或前轮驱动型汽车的从动轮来说,不存在这样的问题。由于它们之间没有相互联结,它们彼此独立转动。但是两主动轮间相互是有联系的。因此一个引擎或一个变速箱可以同时带动两个车轮。如果车上没有差速器,两个车轮将不得不固定联结在一起,以同一转速驱动旋转。这会导致汽车转向困难。此时,为了使汽车能够转弯,一个轮胎将不得不打滑。对于现代轮胎和混凝土道路来说,要使轮胎打滑则需要很大的外力,这个力通过车桥从一个轮胎传到另一个轮胎,这样就给车桥零部件产生很大的应力。1.2.1 开式差速器
开式差速器的结构,是典型的行星齿轮组结构,只不过太阳轮和外齿圈的齿数是一样的。在这套行星齿轮组里,主动轮是行星架,被动轮是两个太阳轮。通过行星齿轮组的传动特性我们知道,如果行星架作为主动轴,两个太阳轮的转速和转动方向是不确定的,甚至两个太阳轮的转动方向是相反的。
车辆直行状态下,这种差速器的特性就是,给两个半轴传递的扭矩相同。在一个驱动轮悬空情况下,如果传动轴是匀速转动,有附着力的驱动轮是没有驱动力的,如果传动轴是加速转动,有附着力的驱动轮的驱动力等于悬空车轮的角加速度和转动惯量的乘积。
车辆转弯轮胎不打滑的状态下,差速器连接的两个半➳轴的扭矩方向是相反的,给车辆提供向前驱动力的,只有内侧的车轮,行星架和内侧的太阳轮之间由等速传动变成了减速传动,驾驶感觉就是弯道加速比直道加速更有力。
开式差速器的优点就是在铺装路面上转行行驶的效果最好。缺点就是在一个驱动轮丧失附着力的情况下,另外一个也没有驱动力。
开式差速器的适用范围是所有铺装路面行驶的车辆,前桥驱动和后桥驱动都可以安装。 限滑差速器用于部分弥补开式差速器在越野路面的传动缺陷,它是在开式差速器的机构上加以改进,在差速器壳的边齿轮之间增加摩擦片,对应于行星齿轮组来讲,就是在行星架和太阳轮之间增加了摩擦片,增加太阳轮与行星架自由转动的阻力力矩。
限滑差速器提供的附加扭矩,与摩擦片传递的动力和两驱动轮的转速差有关。 在开式差速器结构上改进产生的LSD,不能做到100%的限滑,因为限滑系数越高,车辆的转向特性越差。
LSD具备开式差速器的传动特性和机械结构。优点就是提供一定的限滑力矩,缺点是转向特性变差,摩擦片寿命有限。 LSD的适用范围是铺装路面和轻度越野路面。通常用于后驱车。前驱车一般不装,因为LSD会干涉转向,限滑系数越大,转向越困难。
1.3 差速器结构
当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长;汽车在不平路面上直线行驶时。两侧主轮走过的曲长短也不相等.即伸路面非平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的滚动半径实际上不可能相等,若两侧车轮都固定在同一刚性转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动 的现象。车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。
1.3.1 对称式锥齿轮差速器中的运动特性关系式 N1 =N2=N0 于是有: N1:N0+N4和N2:N0-N4 N1+N2=2N0
上式表明,左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,这就是两半轴齿轮直径相等的对称式锥齿轮差速器的运动特性关系式。
在以上差速器中,设输入差速器壳的转矩为MO,输出给左、右两半轴齿轮的转矩为M1和M2。当与差速器壳连在一起的行星齿轮轴带动行星齿轮转动时,行星齿轮相当于一根横向杆,其中点被行星齿轮轴推动,左右两端带动半轴齿轮转动,作用在行星齿轮上的推动力必然平均分配到两个半轴齿轮之上。又因为两个半轴齿轮半径也是相等的。所以当行星齿轮没有自转趋势时,差速器总是将转矩MO平均分配给左、右两半轴齿轮,即: 当两半轴齿轮以不同转速朝相同方向转动时,设左半轴转速nI大于右半轴转速n2,则行星齿轮绕轴轴颈自转,此时行星齿轮孔与行星齿轮轴轴颈间以及行星齿轮背部与差速器壳之间都产生摩擦,半轴齿轮背部与差速器壳之间也产生摩擦。这几项摩擦综合作用的结果,使转得快的左半轴齿轮得到的转矩M1减小,设减小量为0.5Mf;而转得慢的右半轴齿轮得到的转矩M1增大,增大量也为0.5Mf。
因此,当左右驱动车轮存在转速差时,
M1=0.5
M2=0.5
左、右车轮上的转矩之差等于折合到半轴齿轮上总的内摩擦力矩Mf
差速器中折合到半轴齿轮上总的 的内摩擦力矩Mf与输入差速器壳的转矩MO之比叫作差速器的锁紧系数K,即
K=Mf/M0
输出给转得快慢不同的左右两侧半轴齿轮的转矩可以写成:
M1=0.5M0
M2=0.5M0
输出到低速半轴的转矩与输出到高速半轴的转矩之比Kb可以表示为
Kb=M2/M1=/
锁紧系数K可以用来衡量差速器内摩擦力矩的大小及转矩分配特性,目前广泛使用的对称式锥齿轮差速器,其内摩擦力矩很小,锁紧系数K为0.05~0.15,输出到两半轴的最大转矩之比Kb=1.11~1.35。因此可以认为无论左右驱动轮转速是否相等,对称式锥齿轮差速器总是将转矩近似平均分配给左右驱动轮的。这样的转矩分配特性对于汽车在良好路面上行驶是完全可以的,但当汽车在坏路面行驶时,却会严重影响其通过能力。例如当汽车的一侧驱动车轮驶入泥泞路面,由于附着力很小而打滑时,即使另一车轮是在好路面上,汽车往往不能前进。这是因为对称式锥齿轮差速器平均分配转矩的特点,使在好路面上车轮分配到的转矩只能与传到另一侧打滑驱动轮上很小的转矩相等,以致使汽车总的牵引力不足以克服行驶阻力而不能前进。
1.4 壳体的加工工艺
壳体的加工质量不仅影响其装配精度及运动精度,而且影响到机器的工作精度、使用性能和寿命。
壳体的种类很多,其尺寸大小和结构形式随着机器的结构和壳体在机器中功用的不同有着较大的差异。但从工艺上分析它们仍有许多共同之处,其结构特点是:
外形基本上是由六个或五个平面组成的封闭式多面体,又分成整体式和组合式两种;
结构形状比较复杂。内部常为空腔形,某些部位有“隔墙”,壳体壁薄且厚薄不均。
壳壁上通常都布置有平行孔系或垂直孔系;
壳体上的加工面,主要是大量的平面,此外还有许多精度要求较高的轴承支承孔和精度要求较低的紧固用孔。
壳体类零件的技术要求:
轴承支承孔的尺寸精度和、形状精度、表面粗糙度要求;
位置精度 包括孔系轴线之间的距离尺寸精度和平行度,同一轴线上各孔的同轴度,以及孔端面对孔轴线的垂直度等;
为满足壳体加工中的定位需要及壳体与机器总装要求,壳体的装配基准面与加工中的定位基准面应有一定的平面度和表面粗糙度要求;各支承孔与装配基准面之间应有一定距离尺寸精度的要求。
壳体零件加工在工艺路线的安排中应注意三个问题:
工件的时效处理 壳体结构复杂壁厚不均匀,铸造内应力较大。由于内应力会引起变形,因此铸造后应安排人工时效处理以消除内应力减少变形;
安排加工工艺的顺序时应先面后孔 由于平面面积较大定位稳定可靠,有利与简化夹具结构检少安装变形。从加工难度来看,平面比孔加工容易。先加工批平面,把铸件表面的凹凸不平和夹砂等缺陷切除,在加工分布在平面上的孔时,对便于孔的加工和保证孔的加工精度都是有利的。因此,一般均应先加工平面。
粗、精加工阶段要分开 壳体均为铸件,加工余量较大,而在粗加工中切除的金属较多,因而夹紧力、切削力都较大,切削热也较多。加之粗加工后,工件内应力重新分布也会引起工件变形,因此,对加工精度影响较大。为此,把粗精加工分开进行,有利于把已加工后由于各种原因引起的工件变形充分暴露出来,然后在精加工中将其消除。
定位基准的选择: 壳体定位基准的选择,直接关系到壳体上各个平面与平面之间,孔与平面之间,孔与孔之间的尺寸精度和位置精度要求是否能够保证。在选择基准时,首先要遵守“基准重合”和“基准统一”的原则,同时必须考虑生产批量的大小,生产设备、特别是夹具的选用等因素。
主要表面的加工:壳体的平面加工,壳体平面的粗加工和半精加工常选择刨削和铣削加工。 刨削壳体平面的主要特点是刀具结构简单;机床调整方便;在龙门刨床上可以用几个刀架,在一次安装工件中,同时加工几个表面,于是,经济地保证了这些表面的位置精度。 壳体平面铣削加工的生产率比刨削高。在成批生产中,常采用铣削加工。
孔系加工: 车床壳体的孔系,是有位置精度要求的各轴承孔的总和,其中有平行孔系和同轴孔系两类。 平行孔系主要技术要求是各平行孔中心线之间以及孔中心线与基准面之间的尺寸精度和平行精度根据生产类型的不同,可以在普通镗床上或专用镗床上加工。
& nbsp;成批或大量生产壳体时,加工孔系都采用镗模。孔距精度主要取决于镗模的精度和安装质量。虽然镗模制造比较复杂,造价较高,但可利用精度不高的机床加工出精度较高的工件。成批生产时,壳体的同轴孔系的同轴度大部分是用镗模保证。
论文主要内容
本论文的主要内容有:对差速器及常用差速器功能、作用及结构作一介绍。汽车动力轮选用差速器的必要性;其次,主要针对差速器壳体安排合理的加工工艺,在这方面要考虑如下几个问题:零件的精度、结构工艺性,零件的毛坯及生产纲领、粗精基准的选择,表面的加工方法,切削用量及工时,在镗孔这道工序中,还要根据六点定位规则设计镗工序夹具,如确定定位方式、夹紧方式、夹紧元件、夹紧力,夹具的操作及维护等,贯穿起来,这是一篇集原理、生产、加工、使用合一的论文。
第2章 零件的作用及结构及工艺分析
差速器壳体球面加工是国内外急需更新的加工工艺。随着汽车制造业的蓬勃发展,尤其是民用轿车的迅猛发展,人们对汽车高质量的差速器壳体零件的要求变的越来越迫切。而差速器壳体零件中关键的一项技术即球面的加工,是决定该零件质量的最重要的一环,它一直 困绕着厂家,没有得到很好的解决。
常用的加工差速器壳体内球面的方法如下;首先由机械手将形成的双面锪刀从♫壳体中间空洞处送至球心,然后左右同时向前穿过差速器壳的孔与在球心中的双面锪刀连接。此时机械手退回,再由左,右动力头单轴驱动两滑台同时向左,右同步运动,从而分别将两侧球面锪成品。锪完球面,两动力头需将锪刀再送至球心,而后由机械手将锪刀从工作件内取出。
该加工工艺的缺点是机床结构复杂,动作繁多。由于成形锪刀固定需刀杆穿过壳体孔,即刀杆直径必须小于壳体孔的直径,造成刀杆强度差。同时因球面加工余量不均匀造成刀具无法抵抗来自任意方向的切削力而产生变形,其结果是球心位置无法保证,刀杆外圆磨损严重,乃至破坏工件内孔。
2.1 零件的作用及结构
翻斗车驱动桥中主传动壳体是翻斗车的主要零件之一,它由内装两对轴承和三根轴构成,其主要作用是把发动机的主要传动力传递给两驱动轮,在零件的两个端部有两个的孔,用于安装滚动轴承并与十字轴相连,起方向轴承器作用,所安装的三根轴之间有平行度和垂直度要求,在处作为装油封处,这样便于密封性能好,从结构上考虑,由于路况不好时,颠覆严重,使零件所受承载荷为交变载荷,工作速度500-1000。工作环境恶劣,因此要求该零件结构坷靠,加工精度必须保证,使整车性能良好。
2.2 零件的工艺分析
翻斗车驱动桥主传动壳体有一组加工表面,一组为圆表面,一组孔,这些加工表明与内圆表面中心线有位置精度要求。
图2.1 差速器壳体
G面、H面、止口面的加工:其中G面和止口面是以后各道工序加工的基准,而且这两个面都有较高的精度和表面粗糙度要求,即要求外圆毛坯φ247加工后达到精度,所以G面和H面加工时,以小端部分为粗基准,为以后G,H面作为精基准和定位作准备,而止口面φ245的外圆和C-D有同轴要求,事装配好轴和轴承后,工作平稳,而H面是轴承结合面,也要求有较高的表面质量,考虑到该零件的生产批量及厂里的实际情况,可以在车床上分别进行粗精加工。
内圆表明φ800孔的加工和孔的加工:两孔处安装滚动轴承,这两处有同轴度的要求,内孔表明加工要求精度高,而孔处安装密封油圈,加工要求较低,处安装轴承,要求两孔有同轴度要求,加工此内孔表明时盖上轴承盖后加工,精度要求较高3。
由于这两孔是用于安装轴承的,尺寸精度。表明质量要求较高,可以采用镗的加工方法,另外,由于这两组孔轴线有着100:0.06的垂直度要求,可以采用专用夹具依次装夹,同时加工出这两个孔,这样容易保证垂直度要求且效率高。
一组孔的加工:钻10-φ9,4-M14内孔,锪φ10-18底孔10-φ9与基准C-D,M-N都有位置度及同轴度要求。4-M14与基准C-D,M-N有位置度要求。
由于改零件属于大批量生产型,要求效率高,我们可以用专用的夹具好工件,一次装夹,同时钻出这14个孔,即10-φ9和4-M14螺纹孔,这样容易保证垂直度要求且效率高,4个螺纹孔在钻出底孔后在专用攻丝机上加工。
而两个M93×2螺纹孔可以在车床上车出,而车螺纹孔时,先车出退刀槽,然后车螺纹。
第3章 工艺规程设计
3.1 确定生产类型
为获得良好 的经济效益,取备品率3%,废品率为2%,W=Q×N
O——年产量20000辆/年
N——每台产品中该零件的个数 1件/辆
β%——备品率 3%
υ%一废品率2% 毛坯重25Kg,零件为重型零件,由生产类型和生产纲领的关系表查的生产类✍型为大批量生产。
3.2 毛坯的选择
3.2.1 毛坯种类及制造方法的形状及选择 φ9孔不铸出
φ245上凹台也不铸出
3.2.2 毛坯的精度等级
查级:中批和大批生产的铸件,尺寸精度等级和表面粗糙度要求较高的铸件,选铸件精度等级为2级。
确定毛坯的机械加工余量和毛坯尺寸及偏差,基准的选择及定位,基准的选择和定位是工艺中重要的一步,选择合理,可使加工质量等级得以保证,以提高效率。
3.3 基准的选择
3.3.1 粗基准的选择
G面,止口面是以后各道工序的加工基准,因而G面和止口面是应先加工出来的,而G面,止口面有尺寸精度要求,所以监工G面,止口面应以H面为基准,这样第一道工序,首先必须加工出H面,为保证G面加工余量均匀,应以G面作为粗基准,但这样会使夹具变得复杂,因而改为G面相离llmm的面作为粗基准,另外因H面,G面与直径为φ80的孔的轴线有垂直度要求,因而还应以直径为φ95外圆作为粗基准来加工H面,止口面。
3.3.2 精基准的选择
加工G面,止口面及H面为精基准,精加工H时,以止口面,G面为精基准。
根据基准统一原则,加工过程中都以G面,止口面作为统一基准,至于各加工面,还应以哪些加工面为基准以限制各道工序所应限制的自由度,则根据各工序的具体情况而定。在加工孔时,内孔表面的加工选用几住年统一原则,保证各加工面的位置度要求。
3.4 工艺路线的制定
制定工艺路线应使零件的几何形状尺寸精度及位置精度等技术要求得到合理保证,在大批生产条件下,采用组合机床及专用夹具,尽量使工序集中,以提高生产率,从经济效益出发,生产成本也相对降低。
工艺方案I:
1.A粗车外圆B精车外圆 3.钻φ10---直径为φ9的孔4--M14底孔锪10-φ18孔,倒角1×45o
4.攻4-M14-6H螺孔。
5.攻φ90轴承孔,退刀槽93.5×4并与轴承盖螺钉连接。
6.粗镗孔φ80.φ84.φ90并倒角。
7.精镗φ80.φ84.φ90孔
8.去M93×2两螺孔并倒角
9.去毛刺,清洗。
10.终检,涂漆。
工艺方案Ⅱ: b.粗车H1面
c.粗车H2面
d.精车外圆
e.精车H1面,保证尺寸
2.a.钻孔10-φ9,铰止
b.钻4~M14底孔φ11.8
c.锪平10---φ18孔
3.倒角1× 45o
4.攻内螺纹4--M4--6H深30
5.安装轴承盖螺钉
6.a.粗镗孔φ79,φ83孔及倒角
b.粗镗孔孔,并倒角1.5×45o& nbsp;
7.a.半精镗孔到, 孔达到图样要求,并倒角0.5×45o
b.半精镗孔φ90到089±0.1。
8.a精镗孔孔
b.精镗孔孔,并倒角1.5×45o
9.a.车槽4×φ93.5
b.车螺纹内径至φ91
c.车螺纹M93×2--6H
d.车另一端槽4×φ93.5
e.车另一端螺纹内径至φ91
f✫.车另一端螺纹M93×2--6H
10.检验,并涂漆
综上方案,方案Ⅱ中把加工止口和H面在一道工序加工,减少了设备和装夹次数,钻孔10--φ9孔及4--M14底孔采用专用钻床夹具,因此大批量生产,大大提高生产率,车槽,车螺纹集中一个工序进行,节约了设备和装夹次数,但工序较复杂。
因此,比较选择II方案最佳
3.5 确定个工序余量及工序尺寸极限偏差
镗孔:
工序名称 工序双边余量 公差等级 最小极限尺寸 工序尺寸偏差
精镗 0.25 1T7 φ79.97
半精镗 0.5 1T10 φ79.4 φ79.5±0.1 毛坯 ±1.0 φ71 φ7l±0.1
镗84孔:
工序名称 工序边间双边余量 公差等级 最小极限尺寸 工序尺寸偏差
半精镗 0.3 1T10 φ84 毛坯 ±1.0 φ71 φ7l±0.1
镗90两孔:
工序名称 工序边间双边余量 公差等级 最小极限尺寸 工序尺寸偏差
精镗 0.5 1T6 φ89.998
半精镗 0.75 1T10 φ88.9 毛坯 ±1.0 φ81 φ8l±0.1
车止口245:
工序名称 工序边间双边余量 公差等级 最小极限尺寸 工序尺寸偏差 粗车 17.5 1T10 φ247 3.6 确定切削用量和切削
镗φ80,φ90孔时:
加工条件 机床:DUll21组合机床
刀具:刀片材料为Y66 a=45o
计算切削用量
1粗镗φ80
a.f=0.8mm/r
b.刀具耐用度t=60mm
c.计算切削速度 =63.7m/min
=1.06m/s
d.确定主 bsp;
放松时,不要将螺母放的太松,以防止弹簧力太大,把压板和螺母弹出。
镗杆进入镗套时应使镗杆上的键通入键槽,以便退刀
使用夹具时,主意定位套是否磨损,如磨损要及时更换,以免定位不准,加工出废品。
致谢
陈祖安老师在本次毕业设计的课题选择和写作过程中给予了悉心指导,陈老师以其浑厚的理论功底、丰富的时间经验、广博的知识、严谨的治学态度,始终给予我深切的关心和教导,使我受益非浅。在此,谨向陈老师致以诚挚的谢意。
最后,感谢所有帮助过我的老师、同学和朋友。
参考文献
[1] 顾崇衔等.机械制造工艺学[M].西安:陕西科学技术出版社,1987.
[2] 甘永立.几何量公差与检测[M].上海:上海科学技术出版社,2001.
[3] 赵如福.金属机械加工工艺人员手册[M].上海:上海科学技术出版社,1979.
[4] 机械制图公差配合和形位公差等国家标准——中国标准出版社
[5] 浦林祥.金属切削机床夹具设计手册[M].北京:机械工业出版社,1995.
[6] 薛源顺.机床夹具图册[M].北京:机械工业出版社,2003.
[7] 王先逵.机械制造工艺学[M].北京:机械工业出版社,2000.
[8] 王秀伦等.机床夹具设计[M].北京:中国铁道出版社,1998.
[9] 张光裕.工程机械底盘构造与设计[M].北京:建筑工业出版社,1986.
[10]王宝玺.汽车拖拉机制造工艺学[M].北京:机械工业出版社,1993.[12]李庆寿.机床夹具设计[M].北京:机械工业出版社,1984.
[13]孙恒.机械原理[M].北京:高等教育出版社,1998.[16]陈家瑞.汽车构造[M].北京:机械工业出版社,2000. [16]刘任等.差速器壳体球面加工新工艺[J].组合机床与自动化加工技术,2000
:P.24-25.
[16]许庆康等.差速器壳体精镗车组合机床[J].组合机床与自动化加工技术,1998:P.38-41.[18]赵丽等.试述机械加工工艺规程[J].农机化研究,2002,2
:P174-175.[20]秦乐.叉车桥壳镗夹具改进设计探讨[J].机械制造,1999:P35-36.[22]蒋旭华.工装设计的经验与体会[J].现代零部件,2005:P32-34.[24]吴小邦.小型工装设计中的一些经验[J].机械制造,2003
:P35-37.
[25]杨秀华.参数化技术在工装设计中的应用[J].机械工人.冷加工,2002:P30-33.
[26]JOHNFREID,QINZHANG,NOBORUNOGUCHI,etal.agricultural automat:guidance research in NORTHA meryca [J].Computers and Electronicsin Agricultm 2002.25:155—167 ’
[27]An Enhanced DFM Model for Shaper Cutters Publication:The Intemation Joumal of AdvancedManufacturingTechn010Sy