电磁型磁悬浮列车动力学研究综述
摘 要: 在综合分析各国电磁型磁悬浮列车的发展现状和及其动力学研究的基础上,考虑车辆和轨道的相互作用,将悬浮列车和轨道作为一个整体,就电磁力、转向架、轨道变形和控制动力学稳定性分析等方面的问题,提出了今后研究的方向。
关键词:电磁型悬浮列车; 动力学; 综述; 弹性轨道
1 磁场与承载能力
1 .1 波器的输出电流; 另外,热损耗、漏磁通、磁心和导轨中的磁阻也会影响单铁力的大小。文献[4 ] 针对轨道转弯处或轨道不平处电磁铁与导磁轨发生倾斜的情况,提出了小滚动下电磁铁的计算公式。文献[ 5 ] , 以保角变换和无穷级数理论为基础,在电磁铁为无限大导磁率的非饱和磁性材料、电磁铁与反应板表面磁势为常值的假设下,提出了在较大滚动条件下升力、侧向力及滚动力矩计算的新方法。
2 转向架
“ 磁轮”概念是在“ 飞行器结构”概念碰壁以后从一个极端走到另一个极端。“ 转向架模块结构”是前二者的折衷,如HSST 型的悬浮系统,在悬浮方向和导向方向无机械的约束,日本HSST203 型实现了5 个自由度模块悬挂。TR207 型和TR20❤8 型也采用了这一概念。
H. Yoshioka 等在文献[ 10~13 ] 中介绍了山梨磁悬浮试验线ML X01 型磁浮列车车辆结构的有关细节,给出了试验车辆转向架简图,并进行了两组车试验,分析了车辆动力学性能,包括悬浮性能、横向定位及稳定性能。
3 磁悬浮列车2轨道动力学
在磁悬浮列车推进技术研究中,人们发现许多磁悬浮列车特有的现象,例如:德国的TR204 型及日本的HSST204 型在实验中发现: ① 运行时车体发生结构振动; ② 双面直线电机引起侧向不平衡; ③ 在钢架桥上悬浮时与桥架一起振动,而在混凝土桥上则无此现象[ 18 ,19 ] 。上海磁悬浮试验车在调试时,就发现了车辆与钢梁共振的现象。
认为轨道是刚体,列车悬浮系统与轨道之间没有耦合关系,故不考虑轨道对车的影响,这在轨道刚度系数很大的实验室内模型车分析时具有足够的精度。但实际线路中,轨道是有弹性的,轨道存在振动。引起振动的原因有: ① 当磁浮车通过轨道时,引起轨道在垂直方向上的静态弯曲; ② 由于轨道梁和悬浮系统间相互作用而引起的轨道动态弯曲; ③ 由于轨道梁的连接和轨道表面引起的几何不规则。因此,轨道的弹性振动和动态变形必须要考虑。
评定磁悬浮列车运行品质的一个重要指标是保证磁悬浮列车能够在各种扰动作用下具有平衡稳定的悬浮。由于磁浮列车的车厢是通过弹簧、阻尼系统与磁悬浮转向架联结的,分析测试悬浮体与二次悬挂体质量、运行速度、轨道长度、磁轮长度、轨道阻尼等对磁悬浮系统的动力特性的影响,研究车厢、悬浮转向架与弹性轨道之间的耦合动力特性是必要的。
文献[33 ] 中,Xiao Jing Zheng 等将车辆的运动、轨道振动和控制系统相结合,针对5 个自由度的二次悬挂体系的动力特性做了数值分析,并具体分析了在系统稳定时垂向和摇头运动的干扰范围和控制参数。分析表明,列车与轨道耦合系统的特性若忽略轨道变形, 其结果是不同的。
; 4 控制系统动力稳定性分析
磁悬浮列车的稳定性分为悬浮、导向和驱动3 个方面。对电磁悬浮列车而言,由于电磁吸力与悬浮间隙的平方成反比关系,使得电磁悬浮系统本身存在固有的不稳定性。同时,磁悬浮列车的负载变化大,工作环境复杂,要求有控制能力强并对模型和参数变化不敏感的非线性控制系统与之相匹配。磁悬浮列车系统是多磁系统,它与单磁系统不同,当电磁铁提供最大升起力时,磁铁处在“力-距离特性曲线”中非线性部分。控制系统的增益与特性曲线上工作点的斜率成正比。因此,工作条件的变化将大大降低系统的瞬时特性,甚至会破坏稳定性。多磁系统还存在机车底盘上的磁铁多种机械 シ解耦和各磁铁控制系统的机械解耦。因此, 电磁型磁悬浮列车的稳定控制是很困难的。
在文献[ 20~22 ,26 ] 中,动力控制系统往往被简化成等效弹簧,忽略了轨道变形对实际控制系统动力稳定性的影响。Meisenholder 和Wang[34 ] 曾用Laplace 变换方法研究了刚性轨道的磁浮体铅直运动的稳定性[35 ] 。周又和等[36 ] 研究了悬挂式电磁悬浮体在铅垂方向运动的动力控制稳定性问题,对刚性轨道上的磁浮控制问题给出了控制参数的稳定区域。对于考虑了轨道弹性的磁悬浮动力系统,在对弹性轨道采用了振动模态函数展开后,其动力系统可由周期变系数的线性常微分方程组所描述。目前,对周期变系数线性常微分方程的动力稳定性分析多数是建立在Floquet 理论基础上的[ 37~39 ] 。陈予恕等指出在动力系统中,Lia2 punov 特性指数作为相邻轨线间的平均指数发散或收敛的指标,在研究系统混沌运动方面有重要作用[ 40 ] 。
5 结论
在磁场与承载能力的研究方面,在诸多文献中,单铁力的计算多是简化方法,忽略了漏磁通、磁心和导轨中的磁阻。然而,磁悬浮列车高速运行时产生的电磁阻力, 将降低有效悬浮力,产生额外的磁势要求,并影响控制系统。电磁阻力的大小还直接影响到直线电机的驱动功率,对整个系统的运行经济性也有一定的影响[43 ] 。建议: ① 在单铁力的计算中,考虑热损耗、漏磁通的影响,分析磁阻对有效悬浮力的影响; ② 在此基础上,建立在轨道平曲线和竖曲线处或轨道不平处, 单铁力在垂直方向以外的力和力矩的计算公式和方法。
在磁悬浮列车动力学研究方面,主要集中于分析测试控制参数和系统特征参数对磁悬浮系统的动力特性影响。弹性轨道对动力控制稳定性及其动力特性有影响,这一点已为人们所接受。在研究磁力作用下轨道梁的特性基础上,建立了磁悬浮列车与弹性轨道耦合的铅垂方⌛向的动力学模型。事实上,磁悬浮列车是一个复杂的多体系统,运动规律很复杂,除侧滚外,还有伸缩、侧移、升降及摇头、点头5 个©自由度,仅建立铅垂方向的模型不足以反映列车的运动状态。文献[33 ] 中Xiao Jing Zheng 等虽然针对5 个自由度的二次悬挂体系的动力特性做了数值分析,但主要侧重于控制方面。
建议: ① 建立能反应每节车厢由4 个完全相同但又独立控制的磁浮架的动力模型; ② 分别假设车厢为刚性和柔性,数值仿真模型列车通过平面曲线和竖曲线的情况; ③ 分析悬浮列车启动时,列车与轨道共振的力学原理。
控制系统动力稳定性分析方面,主要根据系统动力特性的数值研究、数值仿真结果,得出系统受控稳定情况下的控制参数。在上述文献中,都没有考虑磁阻力的情况,也没有考虑诸如负载变化、强侧风、轨道附近有振 动源 、外界磁场波动等对磁浮系统的影响。在磁悬浮气隙不超过1 cm , 气隙波动控制在1 mm 的情况下,这些因素是否不予考虑,有待商讨。
参考文献:
[ 3 ] J ung V. Magnetisches Schweben[ M ].Berlin : Spring2Berlag , 1988.
[5 ] 谢云德, 常文森. 电磁型磁浮列车单铁力的计算及运动稳定性和可控性研究[J ]. 铁道学报, 1995 ,16 .
[6 ] Masada E. Development of Maglev Transportation in Japan : Present State and FU TURE Prospects[ A ]. Maglev’93 [ C ]. Argonne :Argonne National laboratory , May 1993.
[ 8 ] Matsumoto A , et al. Vehicle Dynamics and Riding Quality of a Maglev2Type Urban Transportaion System CHSST2100 [A ]. The International Conference on Spe✈ed Up Rechnology for Tailway and Maglev Vehicels [ C ]. Yokohama : J SME , Nov. 1993.
[ 9 ] 尹力明. 磁悬浮转向架的动力学关系及部件强度的计算方法[J ]. 机车电传动, 1997 , .