一种基于标识的矿石图像分割方法
摘要:针对矿石图像中铁矿石相互粘连、大小不同、形态不规则等特点,提出基于双窗的局部均值阈值化算法,较好地将粘连的各矿石目标相互分离。结合孔洞填充、距离变换等算法获取矿石种子标记图像,利用基于标记改进的分水岭算法完成矿石图像分割。实验结果表明,该算法能有效分割粘连矿石,分割效果良好。
关键词:矿石图像分割;局部均值阈值化;孔洞填充;距离变换;分水岭算法
DOIDOI:10.11907/rjdk.161258
中图分类号:TP317.4文献标识码:A文章编号:1672-7800(2016)006-0215-03
参考文献:
[1]TESSIER J,DUCHESNE C,BARTOLACCI G.A machine vision approach to on-line estimation of run-of-mine ore compositi©on on conveyor belts[J].Minerals Engineering,2007,20(12): 1129-1144.
[2]PEREยZ C A,ESTVEZ P A,VERA P A,et al.Ore grade estimation by feature selection and voting using boundary detection in digital image analysis[J].International Journal of Mineral Processing,2011,101(1-4): 28-36.
[3]SALINAS R,RAFF U,FARFAN C.Automated estimation of rock fragment distributions☯ using computer vision and its application in mining[J].IEE★ Proceedings-Vision,Image and Signal Processing,2005,152(1): 1-8.
[4]ZHANG G Y,LIU G Z❤,ZHU H.Segmentation algorithm of complex ore images based on templates transformation and reconstruction[J].International Journal of Minerals,Metallurgy,and Materials,2011,18(4): 385-389.
[5]王凤娥.改进后的分水岭算法在图像分割中的应用研究[D].济南:山东大学,2008.
[6]CHATTERJEE S,BHATTACHERJEE A.Genetic algorithms for feature selection of image analysis-based quality monitoring model:an application to an iron mine[J].Engineering applications of artificial intelligence,2011,24(5): 786-795.
[7]朱聪.光学镜片表面疵病检测算法研究[D].成都:西南交通大学,2014.
[8]BAILEY D G.An efficient euclidean distance transform[M].Combinatorial Image Analysis.Springer.2005: 394-408.