初中数学概念教学法浅谈

时间:2025-01-13 13:33:51 来源:作文网 作者:管理员

【摘 要】数学概念是数学教学的重点内容,也是学生必须掌握的重要基础知识之一,是数学基本技能的形成与提高的必要条件。在概念教学中,教师要讲究教学方法,注重概念的形成过程,多启发学生的主动性与创造性;要求学生理解概念的根本内涵,弄清概念之间的区别与联系,记忆概念注意关键词语和分析概念。

【关键词】数学基本概念;教学思维培养

人们对客观事物现象的认识一般是通过感觉、知觉、思维形成观念(表象),这是感性认识阶段。在感性认识的基础上再经过比较、分析、综合、抽象、概括等一系列思维活动,从而认识事物现象的本质属性形成概念,这是理性认识阶段。理性认识在实践的基础上不断深化,概念又会进一步发展。数学概念的产生和发展也是如此。数学概念是反映事物在数量关系和空间形式上的本质特性的思维形式。是数学学科的基本内容,是进行数学推理、判断、证明的依据,是建立数学定理、法则、公式的基础,也是形成数学思想方法的出发点。数学概念的♂建立是解决数学问题的前提。如果学生没掌握好数学概念,那么他的数学能力将很难得以发展,从而影响其综合素质的提高。因此,概念教学在数学教学中有着重要地位。

一、准确引入,培养思维

(1)列举生活实例,提供现实原型。中学数学中的许多概念来源于现实世界,对于这类概念,要从学生所熟悉的日常生活或生产实际中常见的事例引入。这种联系现实世界引入概念的方式,有助于学生将客观现实材料和数学知识的现实融于一体。比如,通过现实生活中存在着大量的具有相反意义的量,引入 ヅ正、负数及互为相反数的概念;在提供日常生活中具有各种对应关系的实例基础上引入“函数”的概念;几何变换与许多实际问题有较为密切的联系,可通过列举蝴蝶、人脸、花朵、窗户的排列、镜面反射等,提供对称图形的现实原型。

(2)在已知概念的基础上引入。从新概念的形成背景看,有的数学概念具有清晰的现实原型或直观模型,有的则产生于已知的相对初级的抽象概念。对于后者,可根据新旧概念的关系,采用恰当的方式让学生观察、对比、辨析、发现,从而引入新概念。在已知概念基础上引入新概念的方式取决于新、旧概念之间具有的逻辑联系。比如,在平行四边形的基础上增加“有一个内角是直角”的属性,从而得到“矩形”的概念。平面几何♥中的概念多数属于这种情况。再如分式的有关概念通过分数的相应概念引入。

二、挖掘教学知识点,展示数学的趣味性

在教学中要紧扣教材,多设计或引用与教学内容有关的新颖有趣而富于思考的问题,使课堂教学生动、活泼、富有吸引力。如在讲解圆的有关性质前,提出问题:车轮为什么是圆的?电脑分别模拟安装有三角形轮子、正方形轮子、椭ธ圆形轮子和圆形轮子的汽车行驶的状态,并分别配各种颠跛沉重的声音及轻快的声音。在生动活泼有趣的氛围中,让学生直观的看到圆形轮子能使汽车平稳地前进,这是“圆”这种形状所特有的性质决定的。然后指出:人们在生活中发现了圆具有一些特殊的性质,然后把这些特殊性质运用到运输工具上,这样制造了圆形轮子,轮子的形状与生产以及日常生活实际有着紧密的联系,学生可初步体会科学来源于实践又还原于实际生活的道理。

在教学中还可结合教材设计一些形式新颖、引人入胜、富有智力价值的数学游戏,它有利于培养数学意识和数学观念,有利于学生将所学的数学知识与日常生活中的问题联系起来,从而加深对数学的理解。

三、概念,让学生准确把握概念的内涵和外延

在讲解一个概念以前,应使学生了解以下几个方面的问题:这个概念讨论的对象是什么?概念中有哪些规定和¿条件?与其他概念比较,有无容易混淆的地方?它们与过去学过的知识有什么联系?这些规定和条件的确切含义是什么?应当如何理解这些区别?根据概念中的条件和规定,能归纳出哪些基本性质?各个性质又分别由概念中的哪些因素决定?这些性质在应用中有什么作用?能否派生出一些重要的数学思想方法?

概念的讲解是概念教学的一个重要环节。讲解概念时,教师首先要讲清概念的外延和内涵。概念所反映事物的范围(或集合)叫做这个概念的外延,这些事物的本质属性的总和(或集合)叫做这个概念的内涵。概念的外延和内涵是分别对事物集合的量和质的描述。如在自然数系中,偶数这个概念的外延是集合{2,4,6,8,…},它的内涵是“能被2整除的自然数”。只有让学生正确的理解了概念的外延和内涵,他们才能准确的理解概念本身。为了加深学生对概念的认识,我们常常用改变概念的内涵、外延的方法,用一般的概念来说明特殊的概念。这样既可以引出新概念,又可以复习旧概念。如在“平行四边形”概念的内涵中增加“有一个内角是直角”,就成为“矩形”的内涵,引出了矩形这个概念。

参考文献:

[2]曾海波.数学概念探索启发式教学.中学数学研究,2008(5)


热门排行: 教你如何写建议书