水环境中有机碳循环的重要驱动力―噬茵体

时间:2025-01-13 20:04:48 来源:作文网 作者:管理员

关键词:水环境;噬菌体;碳循环;可溶性有机碳

中图分类号:Q939.48

文献标识码:A

水环境面积约占地球表面的71%,可分为海洋、湖泊、河流等,是众多生物赖以生存的一类重要生态系统。在这个生态系统中碳循环是其中非常重要的一环,它支配着系统中其它物质的循环,也深刻影响着人类的生存环境,因此碳循环研究是生态系统能量流动的核心问题。目前的研究结果表明,在水环境的碳循环中除了化学平衡、物理泵参与了碳循环外,生物泵也是必不可少的一个重要环节,在生物泵环节中病毒尤其是噬菌体的重要作用逐步为人所知[1~4]。

病毒广泛分布于地球的各种生境中[1~4],它们不仅影响着宿主的生存状况和进化历程[5,6],而且通过裂解宿主快速释放有机碳而影响着系统中其他物质循环和能量流动[7,8]。当前,病毒(尤其是噬菌体)在维持可溶性有机碳(dissolved organic car-bon,DOC)平衡中的作用已成为生态学、微生物学和海洋生物学等研究领域关注的热点,其最新研究成果及评论纷纷登载在诸如NATURE、SCI-ENCE等国际著名学术刊物上[9~13]。

本文针对噬菌体在海洋、湖泊、冰尘穴及湿地有机碳循环中的作用进行简单介绍。

1噬菌体在海洋有机碳循环中的作用

海洋是地球上最大的碳库,含碳量为大气的50倍,生物圈的15倍,同时海洋还对调节大气中的含碳量起着非常重要的作用。由于海洋储碳对于应对全球变暖具有重要意义,生物泵储碳过程研究已成为近3ღ0年来海洋碳循环研究的焦点之一:海洋中的有机碳更主要的是以溶解有机碳(dissolved organic carbon,DOC)形式存在的,从过滤分离角度看,DOC占总有机碳的95%。病毒是海洋中数量和种类最多的生物,总量约l030个,是海洋微生物群落的重要组成部分,在全球生态系统调控、生物地球化学循环,特别是碳循环中具有重要的作用,也是一类不可忽视的战略生物资源。

“微食物环”是指海洋中溶解性有机物被异养浮游细菌摄取形成微生物型次级生产量,进而又被原生动物和桡足类所利用的微型生物摄食关系,海洋病毒主要通过“微食物环”介导了这一过程中的物质循环和能量流动。病毒通过裂解浮游植物和异氧细菌加速了颗粒性有机物(POM)向可溶性有机物(DOM)的转化,从而影响海洋系统的物质循环;而噬菌体半衰期很短,其死亡后又会形成溶解态的营养物质,在“微食物环”中形成一个“病毒回路(viral shunt)”,加快碳、氮等元素在微生物间的循环(图1)[9]。因此,噬菌体导致的细菌溶解成为初级生产者与消费者参与C、N循环最重要的途径之一[14]。

因此,病毒尤其是噬菌体在海洋生物地球化学循环尤其是碳循环和深海代谢方面扮演了重要角色。

2噬菌体在湖泊有机碳循环中的作用

由此可见,虽然湖泊生态系统复杂,但病毒尤其是噬菌体在有机碳循环中同样扮演着非常重要的角色。

3噬菌体在冰尘穴有机碳循环中的作用

冰尘中微生物的定殖加深了冰表而的颜色,其原因在于冰尘穴中的光合作用率远高于呼吸作用率,净吸收CO2,是一种负反馈机制,因此冰川表面能不断累积有机质,形成自我维持的生态系统,吸收的太阳射线进一步增加,促进冰的溶解,为微生物生长提供了必需的水份,并通过物理和生物活动将水和有机质进一步分散到冰川的其他部分,促进了微生物、有机质和碎屑转移到周边(如冰川底部),促进了其他生态系统的生命活动[26]。

对于较简单封闭的生物地球化学微循环系统,如南极麦克马多干河谷冰川的冰尘穴,那里仅含有水、冰、矿物和有机碎屑,但也能长期维持微生物种群结构的平衡;Bagshaw等[33]系统研究了其中溶解物随季节变化而产生的化学演变过程。通过对DIC、DOC、K+和SO42-的检测发现:冰尘穴中DOC的产生速率为每年释放碳0.75μg/cm2,冰尘中代谢初级产物的溶解、周期性沉淀、次级碳酸盐的溶解、夏季的净光合作用和秋季冰冻时期净呼吸作用是左右冰尘穴中季节性变化和年溶解浓度的主要过程。

通过对格陵兰和阿尔卑斯山冰尘穴中微生物(噬菌体、细菌和藻类等)进行的研究表明:仅该地区微生物每年释放的有机碳就高达6400t[34]。所以在冰川生态系统中冰尘穴扮演着非常重要的角色。冰川覆盖了地球l5xl06km2的表面积,其生态系统同样对全球碳循环影响巨大。

因此,噬菌体感染而导致细菌裂解对冰尘穴生态系统中营养物质和有机质的循环起着重要作用。

4噬菌体在湿地有机碳循环中的作用

湿地狭义是指陆地与水域之间的过渡地带,广义上则被定义为地球上除海洋(水深6m以下)外的所有大面积水体。按照湿地的广义定义,它覆盖了地球表面的6%,却为地球上约20%的物种提供了生存环境,在维持全球生态系统平衡中具有不可替代的生态功能,享有“地球之肾”的美誉。湿地也是连接生物圈、大气圈、水圈、岩石(土壤)圈的重要纽带,位于陆生生态系统和水生生态系统之间的过渡性地带ฑ,具有独特的生态功能。

综上所述,病毒作为海洋中数量最多的生命粒子,一个重要的生态作用是作为其他微型生物的消费者,使得许多浮游生物细胞成为无内容物的“ghost”,同时把微生物POC转化为DOC,形成“病毒回路”,进而改变了海洋生态系统中物质循环和能量流动的途径,而病毒回路的存在可使系统中的呼吸和生产力较无病毒的系统高出约1/3 [39,40]。病毒尤其是噬菌体在在湖泊生态中对细菌溶解产生的有机C的流动和再同化过程起到重要生态作用。而在冰川生态系统中生命活动最活跃的栖息地一冰尘穴,噬菌体感染而导致细菌裂解对冰尘穴生态系统中营养物质和有机质的循环起着重要作用。所有的证据表明噬菌体在不同生态系统中对DOC的循环均起着举足轻重的作用,但在不同的系统中它们的贡献率和作用机制和调节方式又有着显著差异,因此,系统研究噬菌体在不同生态系统中对DOC的调节作用,将有利于全面理解和揭示噬菌体(病毒)在整个地球物质循环和能量流动中所起的作用。

5结语

水环境是人类社会赖以生存和发展的重要场所,碳循环的关键在于过程与机制,其中的生物过程机制是焦点之一。维持全球碳平衡的关键不应仪仅关注各个库的碳贮存总量,而应更多地研究碳的流向问题,以及“源”、“汇”不平衡的问题。噬菌体由于结构简单、基因组小、便于操作等优点,常常被用作生物基因复制及表达调控研究的模型,对近现代生物化学与分子生物学的发展做出了突出的贡献。尽管目前的研究已表明噬菌体广泛分布于各生境中,对全球的碳、氮循环均有重要影响,但对于噬菌体在©水环境中的分布及生态功能方面的了解仍然非常有限。我国科学家开展了影响南海深海碳循环的底栖微生物氮营养盐补充过程和机制研究,以及南海水体中古菌的分布及生物地球化学功能的研究,但对水环境中噬菌体对有机碳循环的作用鲜有报道。昆明理工大学生命科学与技术学院对腾冲热海高温噬菌体和云南高原湖泊低温噬菌体多样性进行了研究,表明高温噬菌体和低温噬菌体均存在多样性,并对部分嗜极微生物噬菌体进行了全基因组解析和功能蛋白的高效表达及其热不稳定性分析,对云南高原湖泊低温噬菌体与有机碳循环的作用研究正在进行中。

对嗜极微生物噬菌体(尤其是嗜冷和嗜热微生物噬菌体)的研究有助于丰富人们对生命起源与进化、生命本质及环境适应策略的认识,而对嗜极微生物噬菌体中重要功能蛋白的开发与应用也将带来巨大的社会和经济效益。

参考文献( References):

[5]SUTTLE C A. Viruses in the sea[J]. Nature, 2005, 437(7057):356-361.

[6]LOPEZ-BUENO A, TAMAMES J, VELAZQUEZ D, et al. Highdiversity of the viral community from an Antarctic lake[J]. Sci-ence, 2009, 326(5954):858-861.

[15]FUHRMAN J A. Marine viruses and their biogeochemical andecological effects[J]. Nature, 1999, 399(6736):541-548.

[22]EVANS C, BRUSSAARD C P. Regional variation in lytic andlysogenic viral infection in the Southern Oman and its contribution to biogeochemical cycling[J]. Applied and EnvironmentalMicrobiology, 2012, 78(18):6741-6748.

[23]THOMAS R, BERDJEB L, SIME-NGANDO T, et al. Viralabundance, production, decay rates and life strategies (lysoge-ny versus lysis) in Lake Bourget (France)[J]. EnvironmentalMicrobioloษgy, 2011, 13(3):616-630.

[27]SHELLEY M, SEAN F. The formation and hydrological significance of cryoconite holes[J]. Progress in Physical Geography, 20น08,32(6):595-610.

[28]FOUNTAIN A G, TRANTER M, NYLEN T H, et al. Evolutionof cryoconite holes and their contribution tomeltwater runofffromglaciers in the McMurdo DryValleys, Antarctica[J]. Journalof Glaciology, 2004, 50(168):35-45.

[29]PORAZINSKA D L, FOUNTAIN A G, NYLEN T H, et al. Thebiodiversity and biogeochemistry of cryoconite holes from Mc-Murdo Dry Valley glaciers, Antarctica[J]. Arctic Antarctic andAlpine Research, 2004, 36(1):84-91.

[30]SAWATROM C, MUMFORD P, MARSHALL W, et al. Themicrobial communities and primary productivity of cryoconitesholes in an Arctic glacier (Svalbard 79 degrees N)[J]. PolarBiology, 2002, 25(8):591-596.

[32]HODSON A J, ANESIO A M, TRANTER M, et al. Glacial e-cosystems[J]. Ecological Monographs, 2008, 78(1):41-67.

[34]ANESIO A M, HODSON A J,FRITZ A,et al.High microbialactivity on glaciers: importance to the global carbon cycle[J].Global Change Biology, 2009,15(4):955-960.

[35]SMITH L C,MACDONALD G M, VELICHKO A A,et al.Siberian peatlands a net carbon sink and global methanesource since the early Holocene[J]. Science, 2004, 303(5656):353-356.

[36]王德宣,丁维新,王毅勇若尔盖高原与三江平原沼泽湿地CH4排放差异的主要环境影响因素[J].湿地科学(WANG De-xuan, DING Wei-xin, WANG Yi-yong. Influence of major en-vironmental factors on difference of methane emission fromZoige plateau and Sanjiang plain wetlands[J]. Wetland Science),2003, 1(1):63-67.

[37]HIROTA M, TANG Y H Hu Q W, et al.Carbon dioxide dy-namics and controls in a deep-water wetland on the Qinghai-Tibetan plateau[J]. Ecosystems, 2006, 9(4):673-688.

[40]焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J].中国科学:地球科学(JIAO Nian-zhi, ZHANCChuan-lun, LI Chao, et al.Controlling mechanisms and cli-mate effects of microbial carbon pump in the ocean (in Chi-nese[J]). Scientia Sinica Terrae), 2013, 43(1):1-18.


热门排行: 教你如何写建议书