数学教学应多培养动手实验能力
动手实验能直接刺激大脑进行积极思维,它不但能帮助学生理解所学的概念,还能让学生通过亲身实践真切感受到发现的快乐。因此,在数学教学中,教师应♡尽可能为学生提供概念、定理的实际背景,设计定理、公式的发现过程,让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确的追求过程中,使学生体验数学发展的过程,ღ领悟数 ﭢ学概念、定理的根本思想,掌握定理证明过程的来龙去脉,增强数学学习的自觉性,使学生在对概念形成过程的分析中,在对公式、定理的发现过程的总结论证中,提高主动参与的机会,以便学生在“做数学”过程中启迪思维,突破教学难点。
例如,在《等腰三角形》一课中,我先让学生在一般三角形ABC中,画出过点A的角平分线、中线、高,在得到它们的概念之后,运用投影变化△ABC顶点A的位置进行试验,让学生观察上述三条线段的变化情况并提出问题:当AC=BC时,会产生怎样的现象?创设了上述问题情境,学生的思维马上活跃起来,从而积极地投入到这一问题的思考之中。
为了解决问题,我让学生画出图形,凭直观发现上面的三条线段互相重合,再让学生画腰上的角平分线、中线、高,通过类比,提出了较为完善的猜想“等腰三角形底边上的高线、中线、顶角的平分线互相重合。”在这一过程中,学生借助了观察试验、归纳、类比以及概括经验事实并使之一般化和抽象化,形成猜想或假设。此时,我又不失时机地进一步提出问题:“为什么等腰三角形的这三条线段会重合在一起?”再一次创设问题情境,激发学生主动探究说理的方法,从而验证猜想。
教师在教学中应该使学生既长知识又长智慧,学生思维能力的发展,同样也可以在实践活动中逐渐培养。学生通过参加教学实践活动,可以把思维和实践活动有机地结合起来,使他们的思维得到发展。
如,在进行“平行线的特征”的 ت教学时,教材给出了两条平行线被第三条直线所截而得到的一个“静态”的基本图形,我设置问题情境:你能用一张不规则的纸折出两条平行的直线吗?说说你的折法。学生在独立未果的情况下,教师给予了恰到好处的点播,最后通过小组合作探究的方式使这一问题得到圆满解决。然后又让学生折出一条直线截这两条平行直线,此时,课本上的三线八角基本图形跃然展现在学生面前,学生根据制作的图形对同位角、内错角、同旁内角分组进行了测量,还有的同学剪下了一个角,把他贴在和它同名的角上,以观察它们是否重合,用来验证这两个角的相等关系,学生在“做中学,学中做”中轻轻松松的学到✔了知识。
生活是教学的源泉,也是认识世界的主要渠道。学生亲自参加实践,亲临其境地感受生活,要比教师重复讲解理解的更深刻,也可以使学生的个性得到张扬,有利于学生的健康成长吧!