数据挖掘技术在管理会计中的应用(1)

时间:2024-11-11 12:36:12 来源:作文网 作者:管理员

【摘要】数据挖掘是从海量数据中发现和提取知识和信息的过程。在管理会计领域中运用数据挖掘技术❣,寻求和发现更多的企业顾客、供应商、市场以及内部流程优化的信息,将为企业决策者提供更为广泛而有效的决策依据,提高企业战略竞争能力。本文简要介绍了数据挖掘的基本概念和方法,在此基础上重点分析了数据挖掘技术在作用成本和价值链分析,产品、市场和顾客分析以及财务风险防范等方面的应用。 【关键词】数据挖掘 信息 管理会计 应用

引言

一、数据挖掘技术的含义

数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。

二、数据挖掘的方法和基本步骤

(一)数据挖掘的主要方法

常用的数据挖掘方法主要有决策树(Decision Tree)、遗传算法(Genetic Algorithms)、关联分析(Association Analysis)、聚类分析(Cluster Analysis)、序列模式分析(Sequential Pattern)以及神经网络(Neural Networks)等。

(二)数据挖掘的基本步骤

SAS研究所提出的SEMMA方法是目前最受欢迎的一种数据挖掘方法,其描述的数据挖掘的大致过程包括取样(Sample)、探索(Explore)、修改(Modify)、模型(Model)和评价(Assess)。

1.数据取样

在进行♂数据挖掘之前,首先要根据数据挖掘的目标选定相关的数据库。通过创建一个或多个数据表进行抽样。所抽取的样本数据量既要大到足以包含有实际意义的信息,同时又不至于大到无法处理。

2.数据探索

数据探索就是对数据进行深入调查的过程,通过对数据进行深入探察以发现隐藏在数据中预期的或未被预期的关系和异常,从而获取对事物的理解和概念。

3.数据调整

在上述两个步骤的基础上对数据进行增删、修改,使之更明确、更有效。

4.建模

使用人工神经网络、回归分析、决策树、时间序列分析等分析工具来建立模型,从数据中发现那些能够对预测结果进行可靠预测的模型。

5.评价

就是对从数据挖掘过程中发现的信息的实用性和可靠性进行评估。

三、数据挖掘在管理会计中的运用

(一)数据挖掘在管理会计中运用的重要意义

1.提供有力的决策支持

面对日益激烈的竞争环境,企业管理者对决策信息的需求也越来越高。管理会计作为企业决策支持系统的重要组成部分,提供更多、更有效的有用信息责无旁贷。因此,从海量数ღ据中挖掘和寻求知识和信息,为决策提供有力支持成为管理会计师使用数据挖掘的强大动力。例如,数据挖掘可以帮助企业加强成本管理,改进产品和服务质量,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。

2.赢得战略竞争优势的有力武器

实践证明数据挖掘不仅能明显改善企业内部流程,而且能够从战略♡的高度对企业的竞争环境、市场、顾客和供应ข商进行分析,以获得有价值的商业情报,保持和提高企业持续竞争优势。如,对顾客价值分析能够将为企业创造80%价值的20%的顾客区分出来,对其提供更优质的服务,以保持这部分顾客。

3.预防和控制财务风险

利用数据挖掘技术可以建立企业财务风险预警模型。企业财务风险的发生并非一蹴而就,而是一个积累的、渐进的过程,通过建立财务风险预警模型,可以随时监控企业财务状况,防范财务危机的发生。另外,也可以利用数据挖掘技术,对企业筹资和投资过程中的行为进行监控,防止恶意的商业欺诈行为,维护企业利益。尤其是在金融企业,通过数据挖掘,可以解决银行业面临的如信用卡的恶意透支及可疑的信用卡交易等欺诈行为。根据SEC的报告,美国银行、美国第一银行、联邦住房贷款抵押公司等数家银行已采用了数据挖掘技术。

论会计电算化目前的问题及其对策

核算型会计软件向管理型软件转变的探讨


热门排行: 教你如何写建议书