浅析初中生数学建模能力的培养策略
数学建模是针对现实世界某一特定研究对象的数量相依关系和主要特点,采用数学语言和数学符号概括地或近似地表述出来的一种数学结构. 当前,初中生数学建模能力偏低,难以运用数学知识建立解决日常生活实际情境的数学模型,尤其对背景复杂,文字较多的数学应用题更是无从下手,这在很大程度上影响了学生综合素质的全面提升. 因此,在初中数学课堂教学中,教师要重视学生数学建模能力的培养,优选有效策略,引导学生有效构建数学模型,发展学生思维创造力,提高学生分析问题、解决问题的能力.
一、创设问题情境,诱发学生的建模热情
问题是思维的起点,良好的问题情境,往往有助于调动学生的探究欲和好奇心,引发学生的认知冲突,燃起学生对知识追求的热情,使其以饱满的激情快速投入到教学活动中. 因此,在初中生数学建模能力的培养过程中,教师要注意创设良好的问题情境,✌从学生感兴趣的数学模型或学生的生活经验和已有的知识背景出发,精心设计难易适中、趣味新颖、富有启发价值、探究意义的数学建模问题,引导学生思考探究,触发学生的数学思维欲望,诱发学生的建模热情.
二、丰富生活背景,培养学生建模意识
数学建模问题不是单纯的数学问题,它是从生活实际原型或背景出发,涉及多方面的生活知识. 在教学过程中,教师要鼓励学生多接触社会实际,积累丰富自己的生活阅历,为正确建立数学模型奠定良好的基础. 同时,在数学建模教学过程中,教师要尽可能地从学生的生活实际出发,结合教学内容,通过设置与学生息息相关的生活背景,捕捉社会热点问题,或根据学生已有知识水平改编例题背景,ส引导学生运用归纳、分析、推理、概括、验证等一系列的思维方法,建立数学模型,解决数学建模问题,培养学生的建模意识,发展学生的思维能力.
例如,在解一次函数y = 5x + 10时,教师可以通过设置不同的生活背景,引导自主探究,合作交流,培养学生的数学建模意识,实现知识的构建. 生活背景1: 公园里有一个长为5m,宽为2m 的长方形花坛. 现把花坛加宽xm,以扩大花坛面积,则花坛面积y 与x 的函数关系为y = 5x + 10. 生活背景2: 弹簧原长10cm,每挂1kg 的物体弹簧伸长5cm,则弹簧长度y 与挂物重xkg 的函数关系为y = 5x + 10. 生活背景3: 某城市出租车起步价为10 元,超过规定的公里数外,每公里再加5 元,则出租车费用y 与超出规定公里数x的函数关系为y = 5x + 10.
三、注重多向思维,拓宽学生建模思路
受某些固定模式和学习方法的影响,学生在学习过程中往往容易形成单向思维的状态,并形成一定的思维定势,从而影响学生思维的灵活性和全面性. 数学建模问题有着一定的假设条件和所要达到的目标,数学建模需要将假设条件与目标巧妙地联系起来,这种联系并不是固定唯一的,而是综合多向的. 因此,在初中生数学建模能力的培养过程中,教师ม要注意学生多向思维的培养,克服思维定势的束缚,引导学生多角度、多方位地构建数学模型,拓宽学生的数学建模思路,提高学生思维的灵活性、深刻性以及广阔性.
池塘AB例如,在讲三角形后,笔者设计以下问题: 如图1,有一个池塘,要测量池塘的两端A、B 间的距离,直接测量有障碍,用什么方法可以测出A、B 的距离.建模1: 构造三角形及其中位线,利用中位线的性质求出AB.建模2: 构造两个三角形,利用全等或相似性质来求出AB.建模3: 构造等腰三角形或等边三角形,求出AB. ☹建模4: 构造直角三角形,运用勾股定理解决问题,求出AB.
四、重视模型归类,增强学生建模✎能力
在初中阶段,方程 和不等式模型、函数模型、几何模型、统计模型等模型类型是较为常见的数学模型. 在教学过程中,教师要重视这些数学模型的归类,引导学生能够根据某种规律建立变量和参数间的一个明确数学关系,并正确运用方程、不等式、函数等数学思想方法来解决实际问题,从而增强学生的数学建模能力. 方程 建模是通过给出的实际问题,设立合适的未知数,找出相等关系,并注意验证结果是否与实际问题相符合.
总之,初中生数学建模能力的培养,符合当前素质和新课程标准改革的需要. 在教学中,教师要重视数学建模,以学生为主体,结合学生实情,精心创设良好的问题情境,诱发学生的建模热情,注意丰富生活背景,培养学生的建模意识,注重多向思维,拓宽学生的建模思路,重视模型归类,增强学生的建模能力,提高学生的数学应用意识,培养学生良好的思维品质.