2015年辽宁省大连市高三双基测试文科数学 高三作文

时间:2024-12-26 02:39:20 来源:作文网 作者:管理员

年级作文 > 高三作文 > :2015年辽宁省大连市高三双基测试文科数学是由小学生作文网为您精心收集,如果觉得好,请把这篇文章复制到您的博客或告诉您的朋友,以下是2015年辽宁省大连市高三双基测试文科数学的正文:

第一篇:《2015辽宁省大连市双基考试文科数学答案》

2015年大连市高三双基测试

数学(文科)参考答案与评分标准

说明:

一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.

二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题

(1)A;(2)C;(3)D;(4)A;(5)D ;(6)D; (7)B;(8)C; (9)A;(10)D;(11) C;(12)b4b6的值为99(学生选B也给分). 二.填空题

(13)256;(14);(15

)k( ;(16)

三.解答题

(17)解:(1)∵(2ac)cosBbcosC0,

2acosBccosBbcosC0由正弦定理,

得2sinAcosBsinCcosBcosCsinB0. ·······································我们的未来作文······························ 2分 即2sinAcosBsin(CB)0,

5

4

sinA(2cosB1)0, ·············································································································· 4分

在ABC中,sinA0,2cosB10,B

3

. ························································· 6分

1

(2)令2x

B

3

, f(x)

13

···················展望未来作文············ 8分 sin2xcos2xsin(2x) , ·

223

5

(kZ) 12

3

2k

2

,kZ,得xk

即当xk

5

(kZ)时f(x)取最大值1. ······································································ 12分 12

(18)解:(Ⅰ)由表知甲流水线样本中合格品数为8+14+8=30,故甲流水线样本中合

30

格品的频率为=0.75 ···························· 2分

40(Ⅱ)从乙流水线上重量值落在505,515合格产品件数为0.02×5×40=4,

不合格产品件数为0.01×5×40=2.设A1,A2,A3,A4 , 不合格产品编号为B1,B2, 抽取2件产品的事件基本空间为

1{(A1,A2),(A1,A3)(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4)(A2,B1), (A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1)(A4,B2)(B1,B2)}共15个

2{(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1)(A4,B2)}共8

谁动了我的奶酪读后感

个,概率P

8

. ······················ 8分 15

(Ⅲ)由(Ⅱ)知甲流水线样本中合格品数为30,乙流水线样本中合格品数为0.9×40=36.

2×2列联表如下:

2

∵K3.117>2.706,

a+bc+da+cb+d66×14×40×40

∴有90%的把握认为产品的包装质量与两条自动包装流水线的选择有关. ····· 12分

(19)解:(Ⅰ)由题知,棱柱的上下底面为菱形,则A1C1B1D1,

2

由棱柱性质可知CC1//B考古学家B1,又CC1A1C1,故A1C1BB1, 又B1D1平面DBB1D1,BB1平面DBB1D1,B1D1BB1B1,

A1C1平面DBB1D1,

又A1C1平面AA1C1C,故平面DBB1D1平面AA1C1C ······· 6分 (Ⅱ)设ACBDO,由(Ⅰ)可知AC平面DBB1D1, 故VCDD1B1B

1

SDD1B1BCO ····················· 8分 3

菱形ABCD中,因为BC2,DAB60,则CBO60,且BD2 则在CBO中, COBCsin60 ·············· 10分 易知四边形DBB1D1为边长为2的菱形,

SDD1B1BD1B1DD1sinDD1B22sinDD1B

则当DD1B90时(DD1D1B1),SDD1B1B最大,且其值为4.

14故所求体积最大值为V4 ············· 12分

33

(20) 解:(Ⅰ)设直线l1的方程为:xmy2,点A(x1,y1),B(x2,y2).

xmy2,

联立方程组2得y22pmy4p0,

y2px.

y1y22pmy,y1y24p.

k1k2

y1yy1y22my1y24(y1y2)

2 x12x22my14my24(my14)(my24)

8mp8mp

0. ······················································································· 4分

(my12)(my22)

32015年辽宁省大连市高三双基测试文科数学

(Ⅱ)设点P(x0,y0),直线PA:yy1

4py1y0

y1y0

y1y0

(xx1),当x2时,x1x0

yM

同理yN

4py2y0

. ························································································· 6分

y2y0

4py2y04py1y0

2,

y2y0y1y0

因为OMON2,4yNyM2,

22

16p24py0(y2y1)y0y1y216p28p2my04py0

2,2 22

y2y1y0(y2y1)y04p2pmy0y0

1

,抛物线C的方程y2x. ···································································· 12分 2

x1f(x)ex(a0)f(x)ex

(21) 解:(Ⅰ),则 aa

p

1x

1e0

令a,则xln

a

故函数f(x)的增区间为(,ln);减区间为(ln,). ······································· 4分

aa

112

(Ⅱ)当ln2,即0a2时,f(x)maxf(2)e2,

aea1111111

当1ln2时,即2a时,f(x)maxf(ln)ln,

aeeaaaa

111

当ln1时,即a时,f(x)maxf(1)e. ···················································· 8分

eaa

4

11111

(Ⅲ)若函数f(x)有两个零点,则f(ln)ln0,即a,

eaaaa

11

而此时,f(1)e0,由此可得x11lnx2,

aa11

故x2x1ln1,即x1x21ln,

aaxx

f(x1)1ex10,f(x2)2ex20又 aa

1

(1ln)x1ex1

x2ex1x2eaeln(ae)ae. ···················································· 12分 x2e

(22) 证明:(Ⅰ)连结AB,∵ABPE四点共圆,∴ABCE. 又∵ABCADC,∴ADCE,∴A,D,M,E四点公圆.5分 (Ⅱ)法一:连结BN,∵PNBPABC,BPNNPC,

PBPN

∴PNB∽PCN,,∴PN2PBPC. ···················· 10分 PNPC

法二:连结PN,AN.由(Ⅰ)知PDNE,∴PDNEPNA,

PDPN

DN∽PNA.N2PDPA又∵APNNPD,∴P∴,∴P,

PNPA

 PBPC

PD,P ∴PN2PBPC. ······························ 10分

(23)解:(Ⅰ)直线l的极坐标方程为:sin()4,

3

x2cos.

C 曲线的参数方程为·························· 5分 (为参数). ·

ysin. (Ⅱ) 曲线C的点P(2cos.sin)到直线l

y20的距离

d

|sin2|

2d)2,tan. sin30

则PA

当sin()

1时,|PA|max2 ;

5

第二篇:《2015年大连市高三双基测试理科数学答案》2015年辽宁省大连市高三双基测试文科数学

2015年大连市高三双基测试

数学(理科)参考答案与评分标准

说明:

一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.

二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.

一.选择题 (1)A;(2)C;(3)D;(4)A; (5)D;(6)D;(7)B;(8)C;(9)A;(10)D; (11) C; (12)B. 二.填空题 (13)

753(14);(15) ;16

. 945三.解答题

(17)解:(I)an1

an

, 2an1

2a1111n,化简得2, an1anan1an

111

2,故数列是以1为首项,2为公差的等差数列. ··············· 6分 an1anan

n(12n1)1

n2. ········· 8分 2n1,所以Sn

2an

(Ⅱ)由(I)知

证法一:

111111111

222

S1S2Sn12n1223n(n1)

1

111111n(1)()()1 ···························· 12分

223nn1n1n1

证法二:(用数学归纳法)当n1时,

111

不等式成立. 1,

n12S1

假设当nk时,不等式成立,即

111k

. 

S1S2Skk1

则当nk1时,则又k

1111k1

, 2

S1S2SkSk1k1(k1)

1k11111k1110, 2222

k1(k1)k2k1(k1)k2k2(k1)(k2)(k1)

1111k1

, 

S1S2SkSk1k2

·························································································· 12分 原不等式成立. ·证法三:

n111111

, 2221,又因为1

n1S1S2Sn12n

所以

111n

. ··································································· 12分 

S1S2Snn1

(18)解:(Ⅰ)系统抽样.

这40辆小型汽车车速众数的估计值为87.5,中位数的估计值为87.5. ··· 2分

(Ⅱ)车速在[80,90)的车辆共有(0.2+0.3)×40=20辆,速度在[80,85),[85,90)内的车辆分别有8辆和12辆.

记从车速在[80,90)的车辆中任意抽取3辆车,车速在[80,85)内的有2辆,在[85,90)内的有1辆为事件A,车速在[80,85)内的有1辆,在[85,90)内的有2辆为事件B,

C8C12C8C1286472则P(A)+P(B)=33. ·············· 8分

C20C20114095(Ⅲ)车速在[70,80)的车辆共有6辆,车速在[70,75)和[75,80)的车辆分别有2辆和4辆,若从车速在[70,80)的车辆中任意抽取3辆,设车速在[75,80)的车辆数为X,则X的可能取值为1、2、3.2015年辽宁省大连市高三双基测试文科数学

21

12

22015年辽宁省大连市高三双基测试文科数学

C2×C441

P(X=1)=3,

C6205C2×C4123

P(X=2)=,

C6205C2×C441

P(X=3)=3,

C6205故分布列为

2015年辽宁省大连市高三双基测试文科数学由小学生作文网收集整理,转载请注明出处!

上一页 1 2 下一页
热门排行: 2016拜年词 好词